祝贺 IntelNav 团队荣获多模态机器人学习挑战赛冠军!Congratulations to Team IntelNav for winning the Multimodal Robot Learning Challenge!

祝贺 IntelNav 团队荣获多模态机器人学习挑战赛冠军! Congratulations to Team IntelNav for winning the Multimodal Robot Learning Challenge!

IntelNav团队获奖图片

我们荣幸地宣布,在近期举办的"多模态机器人学习挑战赛"中,来自中国科学技术大学、穆罕默德·本·扎耶德人工智能大学、南洋理工大学及南京大学的联合团队"IntelNav"凭借其在"物理环境中的视觉与语言导航"赛道上的卓越表现,荣获第一名.

该团队由郝海虹、韩明飞、向毅、纪伟等研究人员组成,中国科学技术大学的常晓军教授亦为团队成员之一。他们的研究成果展示了在复杂物理环境中结合视觉与语言指令进行高效导航的前沿能力,为具身智能及机器人技术在实际场景中的应用提供了重要推动。

这一成就体现了跨机构合作在解决人工智能与机器人领域关键问题上的强大潜力。我们期待该团队未来在相关领域持续探索,取得更多突破性成果。

We are pleased to announce that Team IntelNav, a joint team from the University of Science and Technology of China, Mohamed bin Zayed University of Artificial Intelligence, Nanyang Technological University, and Nanjing University, has achieved first place in the recent Multimodal Robot Learning Challenge for their outstanding performance in the “Vision-and-Language Navigation in Physical Environments” track.

The team, comprised of researchers including Haihong Hao, Mingfei Han, Yi Xiang, Wei Ji, and Professor Xiaojun Chang from USTC, demonstrated cutting-edge capabilities in efficient navigation by integrating visual and linguistic instructions in complex physical environments, providing significant impetus for the application of embodied AI and robotics in real-world scenarios.

This achievement highlights the strong potential of cross-institutional collaboration in addressing key challenges in AI and robotics. We look forward to the team’s continued exploration and further groundbreaking accomplishments in the future.

Xiaojun Chang
Xiaojun Chang
常晓军教授/主任

My research interests include Artificial Intelligence, Machine Learning and Multimedia.